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Abstract—The problem of communicating sensor readings over
a multiaccess channel for detecting a target using type-based
multiple access (TBMA) is considered. TBMA is analyzed in a
general framework by considering non-i.i.d. data and nonidentical
channel gains. An asymptotically optimal detector is proposed and
its error-exponents for detection probabilities are characterized
using tools from large deviations theory (LDT). In case of i.i.d.
channel gains, it is shown that the performance of TBMA presents
two distinct behaviors depending on whether the channel gains
have zero mean. Numerical simulations are used to demonstrate
that the error exponents provide reasonably accurate estimates of
the performance of TBMA.

Index Terms—Distributed detection, error exponents, fading
channels, large deviations (LD), multiaccess communication,
sensor networks, types.

I. INTRODUCTION

I N this paper, we consider the medium access communica-
tion problem between sensor nodes and a fusion center. The

fusion center is interested in detecting the presence of a target
or estimating a parameter of the observed random field.

A. Modeling of Sensor Data

We consider a group of sensors trying to transmit their data
to a fusion center over a multiaccess channel (MAC). In general,
sensors observe real-valued data. For practical purposes, how-
ever, the observations are in general quantized before commu-
nication. In this paper, we do not deal with how the quantization
is done, and assume that observation at sensor

is already quantized to possible levels. In target detection,
sensors may quantize their data to two levels indicating whether
target is detected or not. In parameter estimation, on the other
hand, ’s may model quantized measurements.

We use notation to denote the real parameter to be
detected or estimated. The parameter can be discrete in case
of target detection (i.e., indicating the presence of
target). In parameter estimation, may take continuous values
representing the true state of the observed phenomenon.
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Sensor data are statistically correlated, since nearby sensors
tend to have correlated observations. A simple model for sensor
data incorporates the conditionally i.i.d. assumption

(1)

i.e., given the parameter , the sensor data are con-
ditionally i.i.d. according to a probability mass function (pmf)

. An interpretation of the conditionally
i.i.d. assumption is that each sensor observes the same param-
eter , but with i.i.d. observation noise.

While the conditionally i.i.d. assumption is applicable in
some scenarios, it is restrictive in general, especially when ob-
servations of sensor nodes have varying degrees of reliability.1

Furthermore, conditionally i.i.d. assumes that the sensed area
is uniform, i.e., the parameter does not vary in the observed
area. In case the sensor observations come from a wide area
with heterogenous parameter values, the model (1) needs to be
generalized.

B. Type-Based Multiple Access (TBMA)

We deal with the transmission of sensor data
over a multiaccess channel. It is assumed that sensor has
channel gain , 2 which does not vary during the course
of transmission. In this paper, we shall be primarily interested
in the following scheme, which is called type-based multiple
access (TBMA) [1]–[4].

Let be a set of predetermined orthonormal wave-
forms. In the TBMA scheme, sensor transmits the waveform

corresponding to its observation with a certain energy
, i.e., it transmits . Due to the additive nature of wire-

less medium, the fusion center receives

(2)

where is white Gaussian channel noise with power spec-
tral density.3

The motivation for TBMA arises from the special case that
the sensor data are conditionally i.i.d. and sensor channel gains

1For example, in a target detection setting locations of sensor nodes play an
important role. If the network is randomly deployed, some nodes may end up in
unfavorable locations, which makes their data less reliable.

2The results of this paper can be generalized to complex-valued channel gains
with minor changes.

3Equation (2) considers only one fusion center receiving data from its neigh-
borhood, and it neglects the interference coming from other sensor-fusion center
groups. In this paper, our objective is to analyze this so-called single-cell sce-
nario thoroughly, which is a challenging problem by itself.
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are identical (say, ). In this case, the received signal
becomes

(3)

where is the number of sensors that
observe symbol . After matched filtering by , it can
be seen that contains a noisy version of the histogram of
sensor observations . The histogram scaled by
the number of sensors, , is also called the type in information
theory [5], and, hence, the name TBMA. The basic idea in
TBMA is to detect the target (or estimate the parameter) from
the noisy type.

C. Related Work and our Contribution

Estimation/detection over multiaccess channels has attracted
considerable attention recently. TBMA has been proposed by
the authors [1], [2] and by Liu and Sayeed [3], [4], indepen-
dently. Works prior to TBMA (e.g., [6], [7]) assumed that each
sensor is allocated an orthogonal channel to transmit its obser-
vation as in TDMA, FDMA, or CDMA.

Several asymptotic optimality properties of TBMA have been
proved under the assumption of conditionally i.i.d. data and
identical channel gains [2], [4], [8]. Since the histogram is a
sufficient statistic for estimation/detection in the case of condi-
tionally i.i.d. data, TBMA is a particularly good choice in that
scenario. In parameter estimation, it has been shown in [1] and
[2] that the mean square error (mse) with TBMA asymptotically
achieves the Cramer-Rao lower bound as the number of sen-
sors, , go to infinity. Similarly, it has been shown in [4] and [8]
that TBMA achieves the best error exponent in target detection.
The intuition behind these optimality results is that the effect of
noise on [(3)] becomes negligible as . As a result,
the asymptotic performance of TBMA is as if the fusion center
has direct access to histogram, which is sufficient to get optimal
performance. Thus, the main conclusion that can be drawn from
[2], [4], [8] is that the asymptotic performance of TBMA is as
if the fusion center has direct access to in case of
conditionally i.i.d. data and identical channel gains.

In other approaches such as TDMA, the bandwidth require-
ment grows linearly with . In TBMA, however, the bandwidth
requirement is independent of —only orthogonal dimen-
sions are needed. This implies that TBMA is significantly more
bandwidth efficient than other orthogonal allocation methods,
when the number of sensors is large compared to . This is
likely to be the case in a target detection scenario with binary
sensor observations .

Wireless channels are subject to random fading, and different
nodes may have different channels gains to the fusion center. In
this paper, we first propose a detector that is asymptotically op-
timal in terms of providing the best error exponent in Bayesian
hypothesis testing. Next, we provide an error exponent analysis
of the TBMA scheme with i.i.d. random channel gains and
conditionally i.i.d. data. This setup, despite being restricted
to the i.i.d. situation, provides significant insights into the

performance of TBMA. In particular, we identify two different
regimes of operation. For the case that the channel gains

have nonzero mean, the detection error probabilities
are shown to decay exponentially with . On the other hand,
if the channel gains have zero mean, then the error probabil-
ities may or may not go to zero as , depending on the
statistics of sensor observations. Our results indicate that the
performance of TBMA significantly depends on the channel
characteristics, and to get the best performance TBMA should
be used in channels with nonzero mean. Numerical simulations
are provided to compare the performance of TBMA with other
orthogonal allocation methods.

In a sensor network without transmit-power control, the
sensor channel gains are generally not i.i.d. distributed, since
some sensors may be closer to the fusion center than the others.
Furthermore, the conditionally i.i.d. data assumption has its
limitations as previously mentioned. In this paper, we also pro-
vide a general characterization of the detection error exponents
for non-i.i.d. channel gains and data. For full generality, an
abstract, large deviations theory (LDT) framework (i.e., the
Gärtner-Ellis Theorem) [9] is used.

Organization of this paper is as follows. In Section II, we
review some results from LDT in hypothesis testing and pro-
pose an asymptotic variant of the maximum likelihood (ML)
detector. In Section III, error exponents of TBMA with varying
assumptions on data and channel statistics are provided and an-
alyzed. In Section IV, some examples and simulation results are
presented. Section V concludes the paper.

II. LD AND THE MINIMUM-RATE DETECTOR

In this section, we are interested in the hypothesis testing
problem

(4)

Consider the TBMA scheme with received signal . Upon re-
ception of , the fusion center decides on whether or
is true. For a given decision rule at the fusion center, let

denote the probability that is decided al-
though was true. Notation is de-
fined analogously. The and are generally called Type-I and
Type-II error probabilities in [10]. We will use the notations

, when the dependence on needs to be made explicit.

A. LD Principle

In this paper, we will be primarily interested in characterizing
the error exponents4 (i.e., the rate of decay)

(5)

of the Type-I and Type-II error probabilities in various situa-
tions of interest (provided that the limits exist). Note that in a
Bayesian setting with priors on the hypotheses,
the exponent for the probability of error is given by

(6)

4Throughout the paper, the notation log refers to the natural logarithm.
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and it can be easily shown that [9]

(7)

Thus, in Bayesian hypothesis testing problems, the minimum of
the Type-I and Type-II error exponents determines the overall
rate of decay of the probability of error to zero.

A classic example is the case where the fusion center has
complete access to under hypothesis .
Then, it is well known that the best achievable error exponent for
Bayesian probability of error is achieved when the Type-I and
Type-II error exponents are equal and is given by the so-called
Chernoff information [5]

(8)

In the TBMA scheme, the statistic used for hypothesis testing
is the inner product (notation ) between and the wave-
forms . Let

(9)

(10)

where are the standard basis vectors, and
. In order to compute asymptotic

error probabilities, we need to understand the asymptotics of
the random vector . The theory of LD characterizes the
probability of large excursions of from its “mean” behavior
by quantifying by the so-called rate function, which is defined
below.

Definition: For a set , let denote the interior of
and denote the closure of . The sequence of random

variables for is said to satisfy the LD principle
with rate function if for any measurable set

where . The effective domain of the func-
tion is defined as .

Remark 1: The sets of interest ’s in hypothesis testing
mostly satisfy the so-called I-continuity property:

(11)

which implies

The rate function admits the following interpretation. For an
integer and , let be the open ball in centered
at with radius . If is continuous in the interior of its
domain , then it satisfies the condition in Remark 1 for all
balls inside . The essence of the LD principle is
that5

(12)

where is a function that goes to zero as . In other words,
the likelihood of the event that is in the close vicinity of
behaves as .

B. Minimum Rate Detector

We will consider the detection error exponents with the ML
detector. Given , the ML decision rule chooses the hypoth-
esis under which the likelihood is maximum. The exact compu-
tation of the likelihood function of , however, is generally
intractable in our setup. To alleviate the problem, we propose a
variant of the ML detector as follows.

Suppose satisfies LDP with rate function under hy-
pothesis . Recall that can be viewed as the
asymptotic probability of the event that turns out to be near

under the hypothesis . Using this idea, we define the min-
imum-rate detector as the decision rule with decision regions

(13)

Here, the detector decides that is true if
holds (i.e., the asymptotic likelihood of under

is higher). The decision region can be interpreted simi-
larly. We expect the error exponents of this detector to be same
as that of the exact ML detector.

Suppose we restrict ourselves to the class of detectors based
on alone (and not on directly). Define a detector in to
be max-min optimal if it maximizes the minimum of the Type-I
and Type-II error exponents amongst all detectors in . Note
that if a detector is max-min optimal, then it also has the best
exponent for probability of error in a bayesian setting since
the probability of error decays exponentially with the lower of
the Type-I and Type-II exponents, as aforementioned. Next, we
provide some results on the asymptotic performance of the min-
imum-rate detector.

Theorem 1: Suppose that satisfies the LDP principle
with rate functions and under hypthesis and ,
respectively. Let [defined in (13)] be -continuous and
be -continuous [(11)]. Then,

i) The error exponents of the minimum-rate detector are given
by

(14)

(15)

5The “
:
= ” notation in (12) means lim 1=n log Prfy 2 B (x)g =

�n(I(x) + o(�)). This notation should be understood similarly in the rest of
the paper.
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ii) If the infimums in (14) and (15) are attained at the boundary
, then the exponents of and

are the same and equal to

(16)

and the minimum-rate detector is max-min optimal in .
Remark 2: Note that for most fading channels of practical

interest, the rate functions of are continuous in the interior
of their domain. As a result, in such cases, the Type-I and Type-II
error exponents are achieved on the boundary of the decision
regions and they are equal.

Proof: See Appendix A.

III. TBMA IN MULTIACCESS FADING CHANNELS

In this section, we analyze the performance of the min-
imum-rate detector by characterizing the rate functions of
under varying assumptions on the data and channel statistics.
From here on, we suppress the superscript in for notational
convenience.

A. Conditionally I.I.D. Data and Nonzero-Mean I.I.D.
Channels

Let be conditionally i.i.d. with pmf . Suppose
that the channel gains are i.i.d. and independent of

. In this section, we will show that the error prob-
abilities , decay exponentially with the network size
under the condition that the channel gains have nonzero mean

with the minimum-rate detector. In Section III-B,
for the case that , we will argue that the error prob-
abilities , may or may not go to zero simultaneously, de-
pending on and .

From the law of large numbers and Slutsky’s Theorem [11],
it follows that in this case:

(17)

in probability as , where is viewed as a vector
. Hence, for large one would expect to

have under hypothesis . Detection errors typically
happen when is close neither to nor to .

The next theorem characterizes the rate function of . We
adopt the following notations from [5]: denotes the
relative entropy between the probability density functions (pdfs)

and . For random variables and , denotes the
relative entropy between the pdfs of and .

Theorem 2: Suppose that the moment generating function of
satisfies

(18)

Let be the function defined as

(19)

where the minimization is over real valued random variables .
Similarly, for define

(20)

for each , where the minimization is over all probability
vectors . Then, satisfies the LD principle with the rate
function under hypothesis

Proof: Given in Appendix B. The proof uses the Gärtner-
Ellis Theorem presented in Section III-C.

Remark 3: The summation satisfies the LD
principle with the same rate function . In other words, the ex-
istence of channel noise does not affect the LD exponent. In-
tuitively speaking, the reason for this is that the large deviation
probabilities of the noise decays superex-
ponentially as . The result in (20) can be intuitively derived
as follows. First, notice that6

(21)

(22)

That is, the function is the LD exponent of the sample
mean of the channel gains, and is the LD expo-
nent of the empirical measure . Moreover, for

, is the exponent of the event that
nodes have sample channel mean near . Hence,

is the exponent of the event
that the empirical measure of sensor data turns out to be near
and the summation is near . Following the
dictum that “rare events happen in the most likely way of all
unlikely ways” [9], we get (20).

Corollary 1: In the TBMA scheme, suppose that there is no
fading viz., a.s. for all . Then

if
otherwise

(23)

Further, if , then the Type-I and Type-II error expo-
nents with the minimum-rate detector are the same and equal to
the Chernoff information

(24)

In this case, TBMA with the proposed minimum rate detector
is optimal in terms of Bayesian error exponent within the
class of all detectors that are a function of the sensor data

and explicitly.
Proof: Equation (23) follows immediately from (19) and

(20). Since the rate functions are continuous in the interior of

6Equations (21), (22) can be obtained from the Chernoff and Sanov Theorems
[9], respectively.
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their domains and convex, it follows that the infimums in (14)
and (15) are attained at the boundary, i.e., when

and hence the two error exponents coincide. Finally,
the error exponents of the minimum-rate detector can be easily
derived with Theorem 1 using Lagrange multipliers. Optimality
of the minimum-rate detector in terms of providing the best
Bayesian error exponent is due to the properties of the Cher-
noff information [5].

Independently, Liu and Sayeed have shown the asymptotic
optimality of TBMA with the ML detector in the no-fading sce-
nario [4] using the Chernoff bounding techniques. The advan-
tage of the LD framework compared to the Chernoff bound is
that it can be easily generalized to the fading scenario as stated
in Theorem 2. A disadvantage of the LD framework, though, is
that it allows us to analyze only an asymptotic version of the ML
detector—the minimum rate detector, but not the ML detector
directly. In case of i.i.d. channels with nonzero mean we expect
the error exponents of the ML detector to be same as that of the
minimum-rate detector (as is the case with no-fading channels),
although we do not have a proof for the same.

Next, we provide an alternative characterization of the rate
function of as follows.

Theorem 3: Assume that (18) holds. Then, can be equiv-
alently expressed as

(25)

Furthermore, if attains the optimal value in (25), then
i) The attaining the minimum in (20) has pmf

(26)

ii) The attaining the minimum in (19) for has
pdf given by

(27)

where denotes the pdf of
Proof: Refer to Appendix C.

Equation (25) characterizes the rate function in terms of a
maximization, and (20) characterizes it in terms of a constrained
minimization. These two optimization problems always give the
same answer, because they are convex duals of each other [12].
Through (26) and (27), Theorem 3 relates the optimal variables
in the primal and dual characterizations of . In case (20) is
used to evaluate , by using (26) and (27), one can obtain the
optimal variables and characterize how “typical” realiza-
tions of rare events occur. Such characterizations, which are in
part motivated by the Conditional Limit Theorem [5], are usu-
ally soughtafter in LDT.

Remark 4: Theorem 3 is useful for computational purposes
as well. Since the rate function has two equivalent optimization
forms, depending on the situation, computation of one might be
preferable to the other. For example, if the dimension is small

(e.g., ), then one can do an exhaustive search over quan-
tized to compute via (20) since can be obtained in
closed form for many channels of interest (such as Gaussian,
binomial). On the other hand, if is large, then using (25) may
be preferable since generic unconstrained optimization methods
(such as steepest descent, Newton’s method) provide guaran-
teed convergence.

B. Conditionally I.I.D. Data and Zero-Mean I.I.D. Channels

The proposed minimum-rate detector and the above result is
useful only for the case that the channel gains have nonzero
mean. If the channel mean is nonzero, then both error exponents
in Theorem 1 are positive, i.e., both and converge to zero
exponentially fast as . On the other hand, if the channel
gains have zero mean, then one or more of the error exponents in
(14) and (15) are equal to zero, and the error probabilities may
not even decay as . We will use the following theorem to
understand the convergence behavior.

Theorem 4: If the channel gains have zero-mean
and variance , then

(28)

as , where denotes the convergence in distribution,
and is a diagonal matrix with entries

Proof: Multivariate Central Limit Theorem [11] gives that
as . Equation

(28) follows from the fact that
Let

Intuitively speaking, Theorem 4 suggests that is asymptot-
ically Gaussian distributed with covariance

, under hypothesis , i.e., the hypothesis testing
problem can be equivalently viewed as a test between

(29)

(30)

This interpretation has significant implications. Possibilities for
the error probability decay behavior are considered.

i) If for all , then the term in (29)
and (30) due to noise becomes negligible as . More
precisely, what happens is that

(31)

as , 7. The test between and
for positive ’s is a very nasty

one; the Type-I and Type-II error probabilities of the ML
detector are strictly positive. In general, (31) suggests that

7Equation (31) follows from the fact that
p
n ~w converges in probability to

the zero vector. Equation (28) and the Slutsky’s Theorem [11] gives (31).
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no decision rule can make the Type-I and Type-II error
probabilities go to zero simultaneously as .

ii) If , for some and
, for all , then with the ML detector

both Type-I and Type-II probabilities go to zero as .
What enables the error probability decay is the th com-
ponent of ; under , the magnitude of the th com-
ponent grows to infinity as almost surely; under

, it stays constant. The other components of do not
provide significant information in discriminating the hy-
potheses, similar to case i).

We will use the following lemma to analyze the error
probabilities.

Lemma 1: Consider the hypothesis testing problem

(32)

where is a real valued random variable. With the ML detector,
the error probabilities scale as follows:

as .
Proof: The proof relies on well known bounds for the

Q-function. See Appendix D for details.
The test considering the th component of corresponds to

and . Theorem 1 with
this choice of , and the preceding discussion suggests that
the error probabilities , of the ML detector based on
scale as , , respectively. In contrast with
the case of nonzero-mean channels, the decay rates in this case
are not exponential. This decay behavior will also be confirmed
via simulations in Section IV-C

i) If , (or, the opposite) is true for
more than one , then the error probabilities with the ML
detector go to zero with a rate faster than ,

given here. Even though the decay is faster,
the error probabilities with the ML detector do not decay
exponentially.

C. Non-I.I.D. Data and Channels

The sensor data need not be conditionally i.i.d. as elaborated
in Section I-A. Moreover, the sensor channel gains need not be
i.i.d., since some sensors may be closer than others to the col-
lection agent. And, in general, sensor observations and channel
gains may be dependent. In this section, we provide a general-
ization of the results of Section III-A for possibly dependent and
not identically distributed data and channels.

Let be a sequence
of valued random vectors. The distribution of

is determined by whether or is the correct
hypothesis. Let

be the moment generating function of . The following theorem
generalizes Theorem 2.

Theorem 5: (Gärtner-Ellis Theorem [13]) Suppose that

(33)

exists as an extended real number. If is an essentially smooth,
lower-semicontinuous function,8 then, satisfies the LD Prin-
ciple with rate function

The function is called the Legendre Transform of .
Remark 5: The above theorem does not require any indepen-

dence, etc. assumption on the sequence . It only
needs the existence of the asymptotic log moment generating
function (mgf) (33) and its continuity, smoothness. Theorem
5 also characterizes the error exponents of the proposed min-
imum-rate detector.

We now present a specific non-i.i.d. case where the rate func-
tion can be calculated explicitly. Consider the standard TBMA
setup with no fading viz.,

where is a binary random variable ( ) and
. As an example of the non i.i.d case, consider

the following hypothesis testing problem:

Bernoulli

Markov Chain with transition matrix

We assume that . As a result, the Markov
chain is irreducible and aperiodic. We are interested in evalu-
ating the performance of the minimum-rate detector proposed
earlier with the TBMA scheme. We note the following:

i) Since we are interested in the asymptotic behavior as
, the initial distribution of the Markov chain is

irrelevant.
ii) We do not expect TBMA to be optimal in this setup since

in this case it is the empirical transition matrix and not
the empirical distribution of the Markov chain which is
sufficient for asymptotically optimal ML detection.

Next, we compute the rate functions for the minimum-rate de-
tector under the two hyptheses. It is obvious that the rate func-
tion under , is given by

if
otherwise.

In order to compute the rate function under hypothesis , we
use a special form of the Gärtner-Ellis Theorem [13] (Theorem
3.1.6, p. 76) for Markov chains. It follows then that the rate
function is given by (34) shown at the bottom of the next
page, where we use the notation to mean .

Lemma 2: If , then is given by (34a) shown
at the bottom of the next page).

8See Dembo and Zeitouni [13] for precise meanings of these terms.



MERGEN et al.: TBMA OVER MULTIACCESS FADING CHANNELS 1087

Proof: From (34), it can be seen that corresponding
to the case , is only a function of .
Optimizing over gives the desired result.

IV. EXAMPLES AND SIMULATION RESULTS

A. On/off Channels

Consider the ON/OFF channel, i.e., is Bernoulli
distributed with mean . For this scenario, is the rela-
tive entropy function between two Bernoulli variables. Using
the Lagrange multipliers method, it is easy to get

where and . Using Theorem
1, the error exponent of is obtained as

(35)

where is the Chernoff information defined before (8), and
.

Simulation results for the hypotheses

(36)

are given in Fig. 1. The LD estimate refers to .
. We compare TBMA with the following version

of TDMA: Sensor nodes take turns to transmit their individual
data in nonoverlapping time intervals. More explicitly, if the th
sensor observes 1, then it transmits the signal in its
time-slot, otherwise it transmits (i.e., the antipodal
constellation is used). The fusion center receives ,

, where are i.i.d. channel noise. The ML
detection is done based on , , where the
receiver is assumed to know the statistics of only.

Some remarks are in order:
i) In the ON/OFF channel, the exact ML detector is compu-

tationally intractable. However, the proposed minimum-
rate detector (13) is very easy to implement.

Fig. 1. ON/OFF channel with binary observations.

ii) Performance estimates provided by the LD theory are rea-
sonably accurate for this scenario.

iii) The TBMA outperforms the TDMA scheme. In our simu-
lations we observed that this is typically the case in chan-
nels with nonzero mean.

iv) The Chernoff information is the optimal exponent
obtained when the fusion center has direct access to

[5]. From (35), it is seen that as
. In other words, the asymptotic performance of

the TBMA scheme approaches the optimal one as the
channel fading disappears. This is in accordance with the
results in [2], [4], which show that the TBMA actually
has the optimal error exponent, when there is no channel
fading.

B. Plus/Minus-1 Channel

Suppose that the channel only takes values in ,
and are i.i.d. The rate function for this channel
doesn^{\prime}t have a closed form expression, but it can be
computed numerically from Theorem 5. Fig. 2 shows as a
function of for the binary observations model in

otherwise.
(34)

where

(34a)
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Fig. 2. Plus/minus-1 channel with binary observations.

(36) SNR . Two end points of this curve are
interesting:

i) As approaches 0.5, the approaches 0. This
approves our intuition from Section III-B that the error
probabilities in a zero-mean channel either do not decay
to zero, or they decay subexponentially.

ii) As approaches 1, the approaches the
Chernoff information upper bound.

C. Gaussian Channels

Suppose that are i.i.d. Gaussian with certain
mean and variance. Depending on the mean, variance and ’s
the Gaussian channels present a rich set of behaviors. In the
Gaussian channel with binary observations, the
vector has a mixed Gaussian distribution, and its likelihood
function of can be computed from

Hence, the exact likelihood function can be computed unlike the
situation, for example, in ON/OFF channels.

Fig. 3 shows the error probability performance of TBMA and
TDMA schemes when the channel has nonzero mean (

, ). Here, TBMA error probabilities
decay exponentially, since the channel has nonzero mean. The
LD estimate of is rather coarse in this channel; the slope of
the curve appears to be same as the slope of , however,
there is a nonvanishing gap between and (this is be-
cause the LD estimate does not consider subexponential terms,
and in particular the constants). The TBMA error performance
again outperforms TDMA.

Fig. 4 shows the error probabilities with TBMA in a
channel with zero-mean ( ). As discussed in
Section III-B, the error probabilities do not go to zero as
even when there is no channel noise and the exact ML detector

Fig. 3. Nonzero-mean Gaussian channel.

Fig. 4. Zero-mean Gaussian channel (Case 1).

is used at the fusion center. Hence, the performance degrada-
tion is not due to the proposed minimum-rate detector. The per-
formance with TDMA scheme is not shown in this figure, be-
cause TDMA still has exponential error probability decay, and
its curve is significantly below that of TBMA.

Here, we see that while the TBMA is optimal in case of iden-
tical (and, nonfading) channels, its performance can be quite
poor in fading channels with zero mean. The reason is that the
sensor transmissions add noncoherently when the channel has
zero-mean (i.e., they tend to cancel each other). Therefore, the
fusion center can not get the type accurately. The only case for
which the error probability decays is when some
and or vice versa.

Fig. 5 shows the error probabilities with TBMA in another
channel with zero-mean ( , ) and

, . The second curve is the estimate

(37)
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Fig. 5. Zero-mean Gaussian channel (Case 2).

Fig. 6. Rate functions for the Markovian hypotheses testing problem, a =

0:2; b = 0:3; c = 0:4.

of provided by Lemma 1
. The error probability decay is due to the fact that the

second entry of is zero. This enables the fusion center to
better distinguish between and , when there are more
nodes transmitting. Here, it is important to note that the decay
is not exponential; it is actually slower. The estimate of
is actually quite good even for small .

D. Non-i.i.d. Data

We now present numerical examples for the detection of
Markov process described in Section III-C. Fig. 6 shows the
decision regions with the minimum-rate detector for a specific
case with . It can be seen that

and . Since
almost surely, it appears as if the minimum-rate detector cannot
distinguish between the two hypotheses. However, the detector
based just on (by setting ) can still be used.

Fig. 7. Type I error probabilities for non i.i.d case, a = 0:2; b = 0:3; c = 0:4.

By Theorem 1, it follows that the error exponent of both Type
I and Type II error probabilities with the minimum-rate detector
is for this example. Intuitively, the probability vector

is the limiting distribution of the Markov chain with
transition matrix and so, it is natural to expect
an interval around the point to lie in . Note also,
that the “optimal” ML detector would require knowledge of the
empirical transition matrix.

Fig. 7 shows the simulated Type I error probability with the
minimum-rate detector with SNR dB. It can be seen that the
slope of the LD estimate is almost the same as that of the Type
I error probability simulated with TBMA. We note in passing
that if the stationary distribution of the Markov chain coincides
with Bernoulli , then TBMA cannot distinguish between the
two hypthesis asymptotically.

V. CONCLUSION

In this paper, we have considered the transmission of sensor
observations over a multiaccess fading channel for the purpose
of detection. We analyzed the performance of the TBMA using
LDT. An asymptotic version of the ML detector was proposed,
and its error exponents were characterized. For channels with
zero mean, it was argued that the detection error probabilities
may or may not decay to zero as the number of transmitters
grow; even though the error probability may go to zero, it does
not go exponentially fast. Simulation results were presented to
validate the theoretical findings and check the accuracy of the
LD approximations.

For the detection scenarios considered, the TBMA is sig-
nificantly more bandwidth efficient than the conventional ap-
proaches such as TDMA, FDMA, and CDMA. Its detection
error performance is also superior to these schemes depending
on the fading statistics. One main reason why TBMA outper-
forms other orthogonal schemes is that the other schemes always
have to contend with noise (the per-user noise does not diminish
as the number of sensors grow), whereas the noise in TBMA
becomes negligible asymptotically in nonzero-mean channels.
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For other schemes, more users mean more number of dimen-
sions—hence, more noise, whereas the TBMA does not have
this problem. The TBMA is also advantageous because of the
fact that it tries to deliver a sufficient statistic and nothing more
than that.

The advantage of the LD Theory presented is that it is
fully applicable for general non-i.i.d. data and channels with
nonzero mean. The LD Theory framework also suggests a
natural asymptotically optimal detector (i.e., the minimum-rate
detector) that works universally for all channels with nonzero
mean. In situations where the exact ML detector was computa-
tionally intractable, we saw that the minimum rate detector is
very easy to implement. For computation of the rate functions
for the i.i.d. scenario, we also provided a convex-dual character-
ization of the optimization problem that gives the rate function.

The performance of TBMA degrades in fading channels with
zero-mean. The reason for that is that the sensor transmissions
add noncoherently when the channel mean is zero. Conse-
quently, they tend to cancel each other, and the fusion center
does not get the type accurately. Mathematically, the received
signal grows as in nonzero mean channels, where
is a constant, is the number of sensors, and is
the pdf of observations represented as a vector. In zero mean
channels, the signal grows as a Gaussian signal
because of noncoherent additions. Therefore, the effect of
on the received signal is seen as a second order effect, and
the TBMA does not work well. Search for new schemes and
improvements over TBMA for use in channels with zero-mean
constitute an interesting area for research (see [15]).

Another important issue that we have not fully investigated in
this paper is the performance of TBMA for non-i.i.d. data and
channels. While we characterized the rate function using the
Gärtner-Ellis Theorem, the practical implications for non-i.i.d.
data and channels need further study. Finding the non-i.i.d.
cases where the exponent becomes zero and the error decay
behavior is subexponential also deserves further study.

APPENDIX

Proof of Theorem 1: i) is immediate from the definition of
-continuity.
For ii), note that and,

hence, the two exponents are equal to (16). Next, we prove
the max-min optimality of the minimum-rate detector. Let the
decision regions corresponding to any other detector in be

. Then, we have

(38)

By assumption, such that

Now, for any , if ,

On the other hand, if , then

and, thus, we have shown that

(39)

From (38) and (39), it follows that the minimum rate detector is
max-min optimal.

Proof of Theorem 2: To obtain the result of Theorem 2
from the Gärtner-Ellis Theorem, we need to compute the asymp-
totic log moment generating function in (33). Since s
are i.i.d. and independent of the channel noise

(40)

Since , the second term does
not vary with ; therefore

(41)

The limit (41) shows that the existence of noise does not affect
the rate function. It follows from (41) that

is equal to the first term in (40), which can be expressed as

The function exists and is finite due to assump-
tion (18). Moment generating functions are continuous and dif-
ferentiable in the interior of their effective domain [9]. Hence,
the function is finite, continuous and differentiable for all

. This implies that the Gärtner-Ellis Theorem can be
applied.

To establish Theorem 2, we only need to show that
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is equal to the in (20). First, observe that

(42)

where the equality can be seen by minimizing the objective
functional in (42) with respect to the probability vector .
The objective functional in (42) is convex with respect to and
concave with respect to , therefore, the minimization and max-
imization terms can be interchanged to get

(43)

In geometric terms, (42) and (43) are equal, because the solu-
tion lies at the saddle point of the objective functional. Take the
supremum in (43) inside the functional to get

(44)

where the second equality can be seen by writing the minimiza-
tion in the original definition of by
using Lagrange multipliers. This establishes the equality

.
Proof of Theorem 3: It follows directly from Appendix B

that

(45)

Next, suppose is the optimal in (25). Using (26) and (27)
it can be shown that

and, thus, it follows that and are the optimizing variables
in (20). Actually the (26) and (27) can be seen to be Lagrange
multipliers corresponding to the optimizations in (42) and (44),
respectively.

Proof of Lemma 1: Let . For the case that ,
it can be easily shown that the Type-I and Type-II error proba-
bilities with the ML detector are given by

(46)

and

(47)

Hence, without loss of generality, we can consider . For
the Type-I case, we use the following inequality [14]:

(48)
Substituting in (48), dividing by

and taking the limit as gives

For the Type-II case, we use the following inequalities [14].

(49)

(50)

and

(51)

In (49), substituting gives

(52)

where we use (50) to get (52). Next, dividing both sides of (52)
by and evaluating the limit of the right-hand side
(RHS) as gives

For the reverse inequality, we use (51). In (51), choose
. Then we have,

(53)
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Dividing both sides by , and taking the limit as
gives

and we are done.

REFERENCES

[1] G. Mergen and L. Tong, “Type based estimation over multiaccess chan-
nels,” IEEE Trans. Signal Process., vol. 54, no. 2, pp. 613–626, Feb.
2006.

[2] ——, “Estimation over deterministic multiaccess channels,” in 42nd
Annu. Allerton Conf. Commun., Contr. Comp., Oct. 2004.

[3] K. Liu and A. M. Sayed, “Asymptotically optimal decentralized type-
based detection in wireless sensor networks,” in IEEE Int. Conf. Acous-
tics, Speech, Signal Processing (ICASSP) Presentation Slides, May 19,
2004.

[4] ——, “Optimal distributed detection strategies for wireless sensor net-
works,” in 42nd Ann. Allerton Conf. Commun., Contr. Comp., Oct.
2004.

[5] T. Cover and J. Thomas, Elements of Information Theory. New York:
Wiley , 1991.

[6] J.-F. Chamberland and V. V. Veeravalli, “Asymptotic results for de-
centralized detection in power constrained wireless sensor networks,”
IEEE J. Sel. Areas Commun. (Special Issue Sensor Networks), vol. 22,
no. 6, pp. 1007–1015, Aug. 2004.

[7] B. Chen, R. Jiang, T. Kasetkasem, and P. Varshney, “Fusion of deci-
sions transmitted over fading channels in wireless sensor networks,” in
36th Asilomar Conf., 2002.

[8] G. Mergen and L. Tong, “Sensor-fusion center communication over
multiaccess fading channels, submitted to,” in IEEE Int. Conf. Acous-
tics, Speech, Signal Processing (ICASSP), Sep. 2004.

[9] F. D. Hollander, Large Deviations (Fields Institute Monographs,
14). New York: Amer. Math. Soc., 2000.

[10] H. V. Poor, An Introduction to Signal Detection and Estimation. New
York: Springer-Verlag, 1994.

[11] P. Billingsley, Probability and Measure, 3rd. ed. New York: Wiley
Inter-Science,, 1995.

[12] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[13] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applica-
tions, 2nd ed. New York: Springer, 1998.

[14] S. Verdú, Multiuser Detection. Cambridge, U.K.: Cambridge Univ.
Press, 1998.

[15] A. Anandkumar and L. Tong, “Distributed statistical inference using
type based random access over multi-access fading channels,” pre-
sented at the Conf. Information Science Systems 2006 (CISS’06),
Princeton, NJ, Mar. 2006.

Gokhan Mergen (S’02) was born in Ankara,
Turkey, in 1978. He received the B.S. degrees in
electrical and electronics engineering and math-
ematics (double major) in 2000 from the Middle
East Technical University (METU), Turkey. He
received the M.S. and Ph.D. degrees in electrical
and computer engineering from Cornell University,
Ithaca, NY, in 2005, respectively.

His industry experience includes work with Bell
Labs, Lucent Technologies, during summer 2003. He
is currently with Qualcomm, Campbell, CA. His re-

search interests lie in the areas of communications theory, information theory,
data networks, and statistical signal processing.

Vidyut Naware (S’03) was born in India in 1978. He
received the B.Tech. degree in electrical engineering
from the Indian Institute of Technology, Bombay, in
2000. He received the M.S. and Ph.D. degrees from
the School of Electrical and Computer Engineering,
Cornell University, Ithaca, NY, in 2004 and 2005,
respectively.

He is currently employed with Qualcomm Inc.,
Campbell, California. His research interests broadly
include wireless communications, information
theory, and networking.

Lang Tong (S’87–M’91–SM’01–F’05) received
the B.E. degree from Tsinghua University, Beijing,
China, in 1985, and the M.S. and Ph.D. degrees in
electrical engineering in 1987 and 1991, respectively,
from the University of Notre Dame, Notre Dame, IN.

He was a Postdoctoral Research Affiliate with the
Information Systems Laboratory, Stanford Univer-
sity, Stanford, CA, in 1991. He was also the 2001
Cor Wit Visiting Professor at the Delft University of
Technology, The Netherlands. He is a Professor with
the School of Electrical and Computer Engineering,

Cornell University, Ithaca, NY. His areas of interest include statistical signal
processing, wireless communications, communication networks and sensor
networks, and information theory.

Dr. Tong received the Young Investigator Award from the Office of Naval
Research in 1996, the Outstanding Young Author Award from the IEEE Cir-
cuits and Systems Society in 1991, the 2004 IEEE Signal Processing Society
Best Paper Award (with M. Dong), the 2004 Leonard G. Abraham Prize Paper
Award from the IEEE Communications Society (with P. Venkitasubramaniam
and S. Adireddy). He serves as an Associate Editor for the IEEE TRANSACTIONS

ON SIGNAL PROCESSING and the IEEE SIGNAL PROCESSING LETTERS.


